
Part Two The Computer System

2.1 Computer Components

In the original case of customized hardware, the system accepts data and produces results (Figure

2.1a), the system accepts data and control signals and produces results. Thus, instead of rewiring

the hardware for each new program

The entire program is actually a sequence of steps. At each step, some arithmetic or logical

operation is performed on some data. For each step, a new set of control signals is needed. Let us

provide a unique code for each possible set of control signals, and let us add to the general-

purpose hardware a segment that can accept a code and generate control signals (Figure 2.1b).

 Figure 2.2 illustrates these top-level components and suggests the interactions among them.

The CPU exchanges data with memory. For this purpose, it typically makes use of

 two internal (to the CPU) registers:

1- a memory address register (MAR) , which specifies the address in memory for the

next read or write,

2- and a memory buffer register (MBR) , which contains the data to be written into

memory or receives the data read from memory.

 Similarly, an I/O

1- address register (I/O AR) specifies a particular I/O device.

2- An I/O buffer register (I/O BR) is used for the exchange of data between an I/O

module and the CPU.

2.2 Computer Function

 The processing required for a single instruction is called an instruction cycle . Using the

simplified two-step description given previously, the instruction cycle is depicted in Figure 2.3.

The two steps are referred to as

 the fetch cycle and

 the execute cycle .

Instruction Fetch and Execute: At the beginning of each instruction cycle, the processor

fetches an instruction from memory.

1- a register called the program counter (PC) holds the address of the instruction to be

fetched next

2- the processor always increments the PC after each instruction fetch so that it will

fetch the next instruction

3- The fetched instruction is loaded into a register in the processor known as the

instruction register (IR).

4- . The processor interprets the instruction and performs the required action. In

general, these actions fall into four categories.

 Consider a simple example using a hypothetical machine that includes the characteristics

listed in Figure 2.4. For And the organize memory using 16-bit words.

 The instruction format provides 4 bits for the opcode,, so 2
4
=16 different opcodes

 and up to 2
12

=4096 (4K) words of memory can be directly addressed

A single instruction cycle with the following steps occurs:

1- Fetch the ADD instruction.

2- Read the contents of memory location A into the processor.

3- Read the contents of memory location B into the processor.

4- Add the two values.

5- Write the result from the processor to memory location A

In Figure 2.5 For any given instruction cycle, some states may be null and others may be visited

more than once. The states can be described as follows:

 Instruction address calculation (iac):

 Instruction fetch (if):

 Instruction operation decoding (iod):

 Operand address calculation (oac):.

 Operand fetch (of):.

 Data operation (do):

 Operand store (os):

Interrupts

 Virtually all computers provide a mechanism by which other modules (I/O, memory) may

interrupt the normal processing of the processor. Table 2.1 lists the most common classes of

 Let us try to clarify what is happening in Figure 2.6 ,We have a user program that contains

two WRITE commands. There is a segment of code at the beginning, then one WRITE command,

then a second segment of code, then a second WRITE command, then a third and final segment of

code. The WRITE command invokes the I/O program provided by the OS. Similarly, the I/O

program consists of a segment of code, followed by an I/O command, followed by another

segment of code. The I/O command invokes a hardware I/O operation.

When the interrupt processing is completed, execution resumes (Figure 2.7). To accommodate

interrupts, an interrupt cycle is added to the instruction cycle, as shown in Figure 2.8:

MULTIPLE INTERRUPTS. Two approaches can be taken to dealing with multiple interrupts:

 The first is to disable interrupts while an interrupt is being processed. This approach is

nice and simple, as interrupts are handled in strict sequential order (Figure 2.9a)

 A second approach is to define priorities for interrupts and to allow an interrupt of higher

priority to cause a lower-priority interrupt handler to itself be interrupted (Figure 3.9b).

 Example: of this second approach, consider a system with three I/O devices: a printer, a disk,

and a communications line, with increasing priorities of 2, 4, and 5, respectively. Figure 3.10

illustrates a possible sequence

2.3 Interconnection Structures

 A computer consists of a set of components or modules of three basic types (processor,

memory, I/O) that communicate with each other. Thus, there must be paths for connecting the

modules. The collection of paths connecting the various modules is called the interconnection

structure. Figure 2.11 suggests the types of exchanges that are needed by indicating the major

forms of input and output for each module type

The interconnection structure must support the following types of transfers:

 Memory to processor:

 Processor to memory:

 I/O to processor:

 Processor to I/O:

 I/O to or from memory:

Over the years, a number of interconnection structures have been tried. By far the most common

are :

(1) the bus and various multiple-bus structures,

(2) point-to-point interconnection structures with packetized data transfer.

3.3.1 Bus Interconnection

 Computer systems contain a number of different buses that provide pathways between

components at various levels of the computer system hierarchy. A bus that connects major

computer components (processor, memory, I/O) is called a system bus .

Although there are many different bus designs, on any bus the lines can be classified into three

functional groups (Figure 2.12): data, address, and control lines.

The data lines =data bus . The data bus may consist of 32, 64, 128, or even more separate lines,

the number of lines being referred to as the width of the data bus.

The address lines = data bus. For example, if the processor wishes to read a word (8, 16, or 32

bits) of data from memory, it puts the address of the desired word on the address lines. Clearly,

the width of the address bus determines the maximum possible memory capacity of the system.

The control bus are used to control the access to and the use of the data and address lines. Typical

control lines include:

 Memory write.

 Memory read

 I/O write.

 I/O read.

 Transfer ACK

 Bus request

 Bus grant

 Interrupt request

 Interrupt ACK

 Clock

 Reset

2.3.1 Point-to-Point Interconnect

 contemporary systems increasingly rely on point-to-point interconnection rather than shared

buses. The principal reason driving the change from bus to point-to-point interconnect was:

1- the electrical constraints encountered with increasing the frequency of wide synchronous

buses.

2- with multiple processors and significant memory on a single chip, it was found that the use

of a conventional shared bus on the same chip magnified the difficulties of increasing bus

data rate and reducing bus latency to keep up with the processors.

example of the point-to-point interconnect approach: Intel’s QuickPath Interconnect (QPI), which

was introduced in 2008. The following are significant characteristics of QPI:

 Multiple direct connections

 Layered protocol architecture.

 Packetized data transfer

 Figure 2.13 illustrates a typical use of QPI on a multicore computer. If core A in Figure 2.13

needs to access the memory controller in core D then

1- it sends its request through either cores B or C,

2- which must in turn forward that request on to the memory controller in core D.

I/O hub (IOH) acts as a switch directing traffic to and from I/O devices.

QPI is defined as a four-layer protocol architecture, encompassing the following layers (Figure

3.14)

 Physical:. The unit of transfer at the Physical layer is 20 bits, which is called a Phit (physical

unit).

 Link: Responsible for reliable transmission and flow control. The Link layer’s unit of transfer

is an 80-bit Flit (flow control unit).

 Routing: Provides the framework for directing packets through the fabric.

 Protocol: The high-level set of rules for exchanging packets of data between devices.

